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Viscoelastic materials have been widely used as devices for vibration control in general.
Frequently, dynamic properties of those materials are provided by manufacturers only in a
graph form in the frequency domain. This is a recurring problem in industry and academia.
Thereby, the goal of this work is to contribute to this important issue which is to obtain
the properties of viscoelastic materials from nomograms supplied by the manufacturer. The
methodology is based on the digitalization of the nomogram of the material and on the sub-
sequent reading of a set of points from two curves in different temperatures. An optimization
problem with simple restrictions is built having characteristic constants of the constituti-
ve models as design variables. The problem is solved by applying a hybrid optimization
technique. The results obtained are presented, and prove to be very promising.
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1. Introduction

Viscoelastic materials (VEMs) have very common applications as structural components or as
elements for mitigating vibrations in vehicular structures, aeronautic structures, rotating axes,
etc. (Rao, 2002; Ribeiro et al., 2015). Due to the great variety of applications of this type of
materials, in the recent decades there has been an increase in the need for more precise models
to describe their mechanical behavior. In this sense, a plenty of works have been presented in
the recent years, not only in the frequency domain but also in the time domain.

In this context, among the works in the frequency domain, one can mention Park (2001), and
Costa and Ribeiro (2011). In these works, the Wiechert generalized model is used to perform an
interconversion of the relaxation modulus function (written in terms of Prony series) from the
time domain to the frequency domain, obtaining a complex modulus. In this function, the real
part represents the equivalent of the stored modulus in mechanical systems, while the imaginary
part represents the equivalent of the loss modulus. Thereby, the authors use optimization tech-
niques for fitting theoretical curves of the loss and storage modulus to the experimental curves.
Following the same line, starting from a VEM composite with one-degree-of-freedom system,
Lopes et al. (2004) proposes an identification methodology based on experimentally measured
transmissibility curves of constitutive models based on fractional calculus. Agirre and Eleja-
barrieta (2010) present an inverse identification method using Laplace transforms, in which a
four-parameter fractional model is converted from the time domain to the frequency domain.
In order to identify properties of a material, an optimization problem is proposed aiming at
minimization of the distance between the theoretical and the experimental values of dynamic
response in a clamped beam, in a given frequency range. Likewise, Jrad et al. (2013) investi-
gate the VEM’s behavior in terms of the dynamic stiffness in the frequency domain using the
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Wiechert model. The constants related to springs and dampers of the model are identified. Mo-
re recently, Jalocha et al. (2015) propose a method to identify VEM material parameters, in
which the relaxation times are optimized based on numerical integration involving the measured
relaxation spectra.

From this brief review of literature, one can observe that different approaches to the charac-
terization of VEMs are based on experimental data. However, one frequently faces the situation
in which the user of such a material has access only to the nomogram provided by the manu-
facturer. That nomogram (exemplified in Fig. 1, for material EAR R○ C1002) provides a graphic
representation for the dynamic modulus and loss factor in a reference temperature, and (using
the concept of ‘reduced frequency’) the possibility of obtaining those variables in other tempe-
ratures.

Fig. 1. Material: C1002 – nomogram provided by the EAR R○ manufacturer

The present work aims at developing and applying a numerical methodology to identify the
properties of a linear and thermorheologically simple VEMs based exclusively on nomograms.
Such a methodology is based on the digitalization of points of the curves from the nomogram,
namely, the dynamic modulus and the loss factor, for different temperatures and frequencies. An
objective function to be minimized is defined by taking into account the distance between the
theoretical model and the digitized points. The design variables of the optimization process are
parameters of the VEM constitutive model. Through mathematical optimization, one minimizes
the objective function. However, due to the optimal point being strongly dependent of the
initial point in the optimization process, we opt for a hybrid algorithm. In this case, initially a
heuristic optimization method, based on the Genetic Algorithm, is used in order to approximate
the probable optimum global point (XGA). This point is used as the starting point for an
optimization process based on nonlinear programming. This last step aims at generating a better
approximation of the global optimum.
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2. Models for linear viscoelastic material response

VEMs can be defined as those which present elastic and viscous behavior simultaneously (Brin-
son and Brinson, 2008; Lemini, 2014). In order to describe their mechanical behavior, various
works (Welch et al., 1999; O’Brien et al., 2001; Jrad et al., 2013) make use of rheological models
of linear viscoelasticity that consist of combinations of springs and dampers in which the springs
represent the elastic part of the behavior and dampers represent its viscous part. Therewith,
and associating those elements in series, parallel, series-parallel, etc., various constitutive equ-
ations appear, which can be written applying the classical mechanical model or the fractional
calculus (Mainardi, 2010). In addition, by interconversion, those models can be defined in time
or frequency domains.

2.1. Wiechert constitutive model (classical mechanical model)

Aiming at describing the mechanical behavior of VEMs, Brinson and Brinson (2008) discuss
a classical physical model named ‘Wiechert model’ or ‘generalized Maxwell model’ (Fig. 2a).
The mathematical modeling of this mechanical system in the time domain t, considering the
influence of temperature T , creates the relaxation modulus function E(t, T ), written in terms of
a series of decreasing exponentials, named ‘Prony Series’, as follows

E(t, T ) = E∞ +
NT
∑

i=1

Ei exp
( −t

αT τi

)

(2.1)

where NT is the total number of terms of that series; E∞ is a constant named as ‘equilibrium
modulus’, representing the purely elastic response of the material; Ei and τi are the elastic
constant and the relaxation time, respectively, associated to the i-th component of the Wiechert
model (Soussou et al., 1970; Brinson and Brinson, 2008; Suchocki et al., 2013). Additionally,
αT is a constant defined as a shift factor that describes the dependence of the relaxation times
in relation to temperature and, in the present work, follows the Williams-Landel-Ferry empirical
equation (Williams et al., 1955) given by

log αT = −
CT1 (T − T0)

CT2 + (T − T0)
(2.2)

where CT1 and C
T
2 are constants to be determined, which are related to the material properties

(Ferry and Stratton, 1960; Ward and Sweeney, 2004; Brinson and Brinson, 2008).

Fig. 2. (a) Wiechert model and (b) fractional Zener model

To analyze the VEMs behavior in the frequency domain, it is common in the literature
(Nashif et al., 1985; Honerkamp, 1989; Bavastri, 1997; Park, 2001; Lopes et al., 2004; Jalocha et
al., 2015) to rewrite Eq. (2.1) as follows

E(Ωr) = ERe(Ωr) + iEIm(Ωr) (2.3)
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defined as a complex dynamic modulus. The variable Ωr, defined as the ‘reduced frequency’,
groups temperature effects T and frequency Ω. The reduced frequency can be represented by

Ωr = αTΩ (2.4)

It is important to highlight that the real part of Eq. (2.3), defined as the ‘storage modulus’, is
given by

ERe(Ωr) = E∞ +
NT
∑

i=1

(Ωrτi)
2Ei

(Ωrτi)2 + 1
(2.5)

and the imaginary part, defined as the ‘loss modulus’, is given by

EIm(Ωr) =
NT
∑

i=1

ΩrτiEi
(Ωrτi)2 + 1

(2.6)

The storage modulus and the loss modulus indicate how much the material behavior approaches
the elastic or viscous behavior, respectively. In this case, the loss factor η, is defined as the ratio
between the loss and the storage, that is

η(Ωr) =
EIm(Ωr)

ERe(Ωr)
(2.7)

This equation describes the ratio between energies dissipated and stored by the material in a
cycle. Consequently, Eq. (2.3) can be written as follows

E(Ωr) = ERe(Ωr)[1 + iη(Ωr)] (2.8)

The real storage modulus and the corresponding loss factor are referred to as dynamic pro-
perties of the material at issue. Such information is useful, for example, for designing projects in
which it is necessary to know the frequencies that results in a greater or lesser energy dissipation.

2.2. The fractional Zener constitutive model

Another mathematical model that describes VEMs behavior is the fractional Zener model
(Fig. 2b) whose differential equation of a non-integer order (often named ‘fractional order’ in
the literature) is given by

σ(t) +
C

E1 + E2

dβσ(t)

dtβ
=
E1E2
E1 + E2

ε(t) +
E2C

E1 +E2

dβε(t)

dtβ
(2.9)

where E1 and E2 are the stiffness modulus of the elastic elements, C is the viscosity coefficient
and β is the non-integer order of differentiation of the Scott-Blair model (Bagley and Torvik,
1986; Mainardi, 2010). Defining the parameters E0 = E1E2/(E1 +E2), rE = (E1 +E2)/E1 and
(τa)

β = C/(E1 + E2), it is possible to rewrite Eq. (2.9) as follows

σ(t) + (τa)
β d
βσ(t)

dtβ
= E0ε(t) + E0rE(τa)

β d
βε(t)

dtβ
(2.10)

This mathematical model is known in the literature as a ‘four-parameter fractional constitutive
model’. Consequently, the relaxation modulus, in the time domain, can be put as follows

E(t) = E0
[

1 + rEEβ
(

−

( t

τa

)β)]

(2.11)
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where Eβ(·) is the Mittag-Leffler (ML) function of an β order parameter (Mainardi and Spada,
2011).
The ML function, denoted by Eβ(z) with β > 0, can be defined by a representation in

convergent series in the complex plane C as follows

Eβ(z) =
∞
∑

n=0

zn

Γ (1 + βn)
β > 0, z ∈ (C) (2.12)

where Γ is the Euler gamma function. For the convergence of the series of potencies in Eq.
(2.12), the parameter β can be complex, since Re(β) > 0 (Mainardi, 2010).
To obtain the dynamic modulus in the frequency domain, one can apply the Fourier transform

to all terms in Eq. (2.10), producing

σ(Ω) + (τa)
β(iΩ)βσ(Ω) = E0ε(Ω) + E0rE(τa)

β(iΩ)βε(Ω) (2.13)

From Eq. (2.13), one can define the complex modulus of the material, Ec(Ω), as follows

Ec(Ω) =
σ(Ω)

ε(Ω)
=
E0 + E0rE(iτaΩ)

β

1 + (iτaΩ)β
(2.14)

Regarding the influence of temperature, Eq. (2.14) can be rewritten as a function of the reduced
frequency (Pritz, 1996; Cruz, 2004; Lopes et al., 2004; Jalocha et al., 2015) according to

Ec(Ωr) =
E0 + E∞b1(iΩr)

β

1 + b1(iΩr)β
(2.15)

where E∞ = E0rE and b1 = (τa)
β . Equation (2.15) is the classical model of a four-parameter

fractional derivative in the frequency domain, and can be rewritten as follows

Ec(Ωr) = ERe(Ωr) + iEIm(Ωr) = ERe(Ωr)[1 + iη(Ωr)] (2.16)

In this case, the storage modulus can be expressed as

ERe(Ωr) =
E0 + (E0 + E∞)b1(Ωr)

β cos
(

βπ
2

)

+ E∞b
2
1(Ωr)

2β

1 + 2b1(Ωr)β cos
(

βπ
2

)

+ b21(Ωr)
2β

(2.17)

and the loss factor as

η(Ωr) =
(E∞ − E0)b1(Ωr)

β sin
(

βπ
2

)

E0 + (E0 + E∞)b1(Ωr)β cos
(

βπ
2

)

+ E∞b
2
1(Ωr)

2β
(2.18)

3. Methodology

Starting from the nomogram of a given material, the methodology is based on the digitalization
of that image and in the subsequent reading of a set of points on the two characteristic curves
of the material (storage modulus and loss factor) in different frequencies and temperatures.
Next, the parameters of the theoretical model are identified through minimization, using a
hybrid optimization technique, of the relative squared distance between that model and the
curves obtained by digitalization. The standard optimization problem is solved based on the
corresponding differences between the curves of the storage dynamic modulus RReqk and the loss
factor Rηqk in the k-th point 1 ¬ k ¬ Npt (Npt is the total number of points of each analyzed



1290 T.L. de Sousa et al.

curve) and in the q-th temperature 1 ¬ q ¬ Ntemp (Ntemp is the total number of evaluated
curves in different temperatures). That is

RReqk =
EExpRe (Ωk, Tq)− ERe(Ωk, Tq)

EExpRe (Ωk, Tq)
Rηqk =

ηExp(Ωk, Tq)− η(Ωk, Tq)

ηExp(Ωk, Tq)
(3.1)

This way, the total relative squared distance RT2 is given by

RT2 =
1

NtotalPts

Ntemp
∑

q=1

Npt
∑

k=1

(

(RReqk )
2 + (Rηqk)

2
)

(3.2)

where NtotalPts is the sum of the total number of all curves. In this case, the goal is to minimize
the total relative squared distance. Thus, the standard optimization problem for the Wiechert
model is defined as

minimize RT2(x) : R
NT+3

→ R

where x = (E∞, Ei, C
T
1 , C

T
2 ), i = 1, 2, . . . , NT

with restrictions: xlow ¬ x ¬ xupp

(3.3)

where the superscripts “low” and “upp” indicate the upper and lower limit values of each design
variable.
On the other hand, in the optimization procedure considering the four-parameter fractional

Zener model, the optimization problem is written as follows

minimize RT2(x) : R
6
→ R

where x = (E∞, E0, b1, β, C
T
1 , C

T
2 )

with restrictions: xlow ¬ x ¬ xupp
(3.4)

The solution to those problems (Eq. (3.3) or (3.4)) provides the characteristic parameters of
VEM under study according to the selected constitutive model.

3.1. Computational structure

The computational implementation of the proposed methodology has been carried out in a
MATLAB R○ environment, as seen in the flowchart presented in Fig. 3.
The characterization procedure is based on a hybrid optimization technique. In that tech-

nique, an approximation of the optimal material parameters is initially obtained using Genetic
Algorithms (GAs). Next, this result is improved by using a deterministic algorithm of Non-Linear
Programming (NLP). In the process of optimization by GA, a sub-routine (ga.m) is used with a
population of 5 000 individuals, 500 generations and a 1.0% mutation rate. Moreover, in NLP, a
sub-routine (fmincon.m) is used with a maximum number of iterations of 1 000, 1E-11 tolerance
and a maximum number of evaluation of the objective function of 10 000.
For the optimization procedure, the simple limits for parameters related to the WLF model,

equilibrium modulus, terms of the Prony series and the fractional Zener model are listed in
Table 1. Those limits are based on numerical experiments so that the upper and/or lower limits
should not be obtained as optimal points.
Regarding the Wiechert model, the relaxation times τi, are fixed and defined dividing the

interval between the minimum (τ1) and the maximum (τNT ) relaxation time into equal intervals
on a logarithmic scale. This procedure is common in the literature (Honerkamp, 1989; Chen et
al., 2000; Soussou et al., 1970; Jalocha et al., 2015). Each material has specific properties and,
thus, different time limits of relaxation. In this sense, Table 2 presents different intervals for each
material.



Property identification of viscoelastic solid materials... 1291

Fig. 3. Computational flowchart implemented in MatLab R○ environment

Table 1. Interval limits of the material properties used in the optimization process

Model Variable Nomenclature Interval limits

WLF
WLF 1 material constant CT1 0 ¬ CT1 ¬ 1000
WLF 2 material constant CT2 [

◦C] 0 ¬ CT2 ¬ 2000

Wiechert
equilibrium modulus E∞ [MPa] 0 ¬ E∞ ¬ 10000
Prony series constants Ei (i = 1, . . . , NT ) [MPa] 0 ¬ Ei ¬ 5000

equilibrium modulus E∞ [MPa] 102 ¬ E∞ ¬ 10
5

Zener instantaneous modulus E0 [MPa] 10 ¬ E0 ¬ 10
2

fractional fractional derivative parameter b1 10−5 ¬ b1 ¬ 10
−2

fractional derivative order β 0 < β < 1

Table 2. Relaxation time intervals for each material

Material Minimum time τ1 Maximum time τNT

C1002 10−8 103

C2003 10−9 103

ISODAMP 10−9 103

4. Results

4.1. C1002 – material identification

The proposed methodology is applied to the identification of the EAR R○ C1002 material
using Wiechert constitutive models with 8, 16, 32 Prony terms and the fractional Zener model.
One can observe – according to Fig. 4 – that the more Prony terms, the better adjustments are
obtained, so much so that above 16 terms there are no significant improvements, evidencing that
from that quantity of terms on, it is already possible to describe the dynamic characteristics of
the material under study with desired precision. On the other hand, the theoretical curves of
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the fractional model adjust almost perfectly to the data, evidencing a good identification of that
material model. The results can be seen in Fig. 4d.

Fig. 4. C1002 identification: (a) 8 Prony terms, (b) 16 Prony terms, (c) 32 Prony terms,
(d) fractional Zener model

The parameters obtained for each identification are presented in Table 3 and 4. Analyzing
the optimal numerical values of constants CT1 , C

T
2 and E0, one observes that the results – for

the different analyses – are close, evidencing an adequate computational implementation.

Table 3. C1002 parameters obtained by hybrid optimization using the Wiechert model

Number of CT1 CT2 E0 =
∑NT
i=1Ei E∞ NLP

Prony terms [◦C] [◦C] [MPa] [MPa] error

8 33.40 317.23 2.54E+3 1.96 5.71E-2

16 35.27 340.77 2.67E+3 1.95 9.30E-3

32 34.75 336.15 2.69E+3 1.95 8.50E-3

Table 4. C1002 parameters using the fractional Zener model

Constants
CT1 CT2 E∞ E0 b1 β

τa NLP
[◦C] [◦C] [MPa] [MPa] [sβ] [s] error

Numerical
34.577 333.037 2.706E+3 1.927 2.089E-3 0.538 1.048E-5 1.225E-2

values
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Furthermore, one must notice that the constant E∞ of the fractional model corresponds
to E0 of the Wiechert model, and E0 corresponds to E∞. Comparing the corresponding values,
one notices a good correlation reaffirming that both models characterize precisely the mechanical
behavior of that material.

4.2. C2003 – material identification

From the proposed methodology, similar identifications to those carried out with C1002
have been performed, and the graphic results are presented in Fig. 5. The numerical values that
characterize the dynamics behavior of that material are shown in Table 5 and 6.

Fig. 5. C2003 identification: (a) 8 Prony terms, (b) 16 Prony terms, (c) 32 Prony terms,
(d) fractional Zener model

Table 5. Parameters of C2003 material obtained by hybrid optimization using the Wiechert
model

Number of CT1 CT2 E0 =
∑NT
i=1Ei E∞ NLP

Prony terms [◦C] [◦C] [MPa] [MPa] error

8 137.16 1165.16 9.30E+3 7.28 7.25E-2

16 178.62 1564.92 9.71E+3 7.17 4.70E-3

32 186.17 1632.68 9.70E+3 7.17 4.20E-3
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Table 6. Parameters of material C2003 using the fractional Zener model

Constants
CT1 CT2 E∞ E0 b1 β

τa NLP
[◦C] [◦C] [MPa] [MPa] [sβ] [s] error

Numerical
146.012 1281.529 9.863E+3 6.989 1.593E-3 0.466 9.913E-7 6.54E-3

values

4.3. Identification of ISODAMP material

The characterization of the EAR R○ ISODAMP material is performed in a similar way the
previous cases. The graphic results are illustrated in Fig. 6. The numerical values of each iden-
tification procedure are presented in Table 7 and 8.

Fig. 6. ISODAMP identification: (a) 8 Prony terms, (b) 16 Prony terms, (c) 32 Prony terms,
(d) fractional Zener model

Table 7. ISODAMP parameters obtained by hybrid optimization using the Wiechert model

Number of CT1 CT2 E0 =
∑NT
i=1Ei E∞ NLP

Prony terms [◦C] [◦C] [MPa] [MPa] error

8 14.34 153.35 1.68E+4 9.70E+1 6.63E-2

16 14.58 160.42 1.74E+4 9.72E+1 2.90E-3

32 14.56 160.13 1.75E+4 1.01E+2 2.60E-3
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Table 8. ISODAMP parameters using the fractional Zener model

Constants
CT1 CT2 E∞ E0 b1 β

τa NLP
[◦C] [◦C] [MPa] [MPa] [sβ] [s] error

Numerical
14.785 162.518 1.757E+4 9.787E+1 4.704E-3 0.443 5.623E-6 3.52E-3

values

4.4. Relaxation modulus in the time domain

Previously, the parameters characterizing the mechanical behavior of EAR R○ C1002, C2003
and ISODAMP materials have been obtained. Replacing such parameters in the relaxation
modulus, Eq. (2.1), it is possible having a graphic visualization, in the time domain, as illustrated
in Fig. 7.

Fig. 7. Relaxation modulus by Wiechert model with increasing Prony terms and using fractional Zener
model: (a) C1002, (b) C2003, (c) ISODAMP

5. Final remarks

The main goal of the present work is to obtain material parameters of constitutive models that
seek to describe the dynamic modulus and the loss factor. Therefore, one starts from nomograms
of EAR R○ C1002, C2003 and ISODAMP materials provided by their own manufacturer. Using
a hybrid optimization technique, identifications are carried out involving the Wiechert model
and the fractional Zener derivative model. Regarding the first model, various identifications are
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performed using increasing Prony terms. One can observe that the greater is the quantity of
Prony terms, the better adjustments are obtained, so that for designs involving those VEMs
under study, 16 Prony terms proved to be enough for their characterization. Regarding identi-
fication involving the fractional Zener model, more accurate adjustments are obtained not only
for the dynamic modulus but also for the loss factor. Besides that, for having less parameters,
the fractional Zener model leads to a shorter computational time of the optimization process.
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